#!/usr/bin/env python3
import torch
from linear_operator.settings import stable_qr_cpu_threshold
[docs]
def stable_qr(mat):
"""
performs a QR decomposition on the batched matrix mat.
We need to use these functions because of
1. slow batched QR in pytorch (pytorch/pytorch#22573)
2. possible singularity in R
"""
if mat.shape[-1] <= stable_qr_cpu_threshold.value():
# Dispatch to CPU so long as pytorch/pytorch#22573 is not fixed
device = mat.device
Q, R = torch.linalg.qr(mat.cpu())
Q = Q.to(device)
R = R.to(device)
else:
Q, R = torch.linalg.qr(mat)
Rdiag = torch.diagonal(R, dim1=-2, dim2=-1)
# if R is almost singular, add jitter
zeroish = Rdiag.abs() < 1e-6
if torch.any(zeroish):
# can't use in-place operation here b/c it would mess up backward pass
# haven't found a more elegant way to add a jitter diagonal yet...
Rdiag_sign = torch.sign(Rdiag)
# force zero diagonals to have jitter added to them.
Rdiag_sign[Rdiag_sign == 0] = 1.0
jitter_diag = 1e-6 * Rdiag_sign * zeroish.to(Rdiag)
R = R + torch.diag_embed(jitter_diag)
return Q, R