Source code for linear_operator.functions

#!/usr/bin/env python3

from __future__ import annotations

from typing import Any, Optional, Tuple, Union

import torch

from linear_operator.functions._dsmm import DSMM

LinearOperatorType = Any  # Want this to be "LinearOperator" but runtime type checker can't handle


Anysor = Union[LinearOperatorType, torch.Tensor]


[docs]def add_diagonal(input: Anysor, diag: torch.Tensor) -> LinearOperatorType: r""" Adds an element to the diagonal of the matrix :math:`\mathbf A`. :param input: The matrix (or batch of matrices) :math:`\mathbf A` (... x N x N). :param diag: Diagonal to add :return: :math:`\mathbf A + \text{diag}(\mathbf d)`, where :math:`\mathbf A` is the linear operator and :math:`\mathbf d` is the diagonal component """ from linear_operator.operators import to_linear_operator return to_linear_operator(input).add_diagonal(diag)
[docs]def add_jitter(input: Anysor, jitter_val: float = 1e-3) -> Anysor: r""" Adds jitter (i.e., a small diagonal component) to the matrix this LinearOperator represents. This is equivalent to calling :meth:`~linear_operator.operators.LinearOperator.add_diagonal` with a scalar tensor. :param input: The matrix (or batch of matrices) :math:`\mathbf A` (... x N x N). :param jitter_val: The diagonal component to add :return: :math:`\mathbf A + \alpha (\mathbf I)`, where :math:`\mathbf A` is the linear operator and :math:`\alpha` is :attr:`jitter_val`. """ if hasattr(input, "add_jitter"): return input.add_jitter(jitter_val) else: diag = torch.eye(input.size(-1), dtype=input.dtype, device=input.device).mul_(jitter_val) return input + diag
[docs]def diagonalization( input: Anysor, method: Optional[str] = None ) -> Tuple[torch.Tensor, Union[torch.Tensor, LinearOperatorType]]: r""" Returns a (usually partial) diagonalization of a symmetric positive definite matrix (or batch of matrices). :math:`\mathbf A`. Options are either "lanczos" or "symeig". "lanczos" runs Lanczos while "symeig" runs LinearOperator.symeig. :param input: The matrix (or batch of matrices) :math:`\mathbf A` (... x N x N). :param method: Specify the method to use ("lanczos" or "symeig"). The method will be determined based on size if not specified. :return: eigenvalues and eigenvectors representing the diagonalization. """ from linear_operator.operators import to_linear_operator return to_linear_operator(input).diagonalization(method=method)
[docs]def dsmm( sparse_mat: Union[torch.sparse.HalfTensor, torch.sparse.FloatTensor, torch.sparse.DoubleTensor], dense_mat: torch.Tensor, ) -> torch.Tensor: r""" Performs the (batch) matrix multiplication :math:`\mathbf{SD}` where :math:`\mathbf S` is a sparse matrix and :math:`\mathbf D` is a dense matrix. :param sparse_mat: Sparse matrix :math:`\mathbf S` (... x M x N) :param dense_mat: Dense matrix :math:`\mathbf D` (... x N x O) :return: :math:`\mathbf S \mathbf D` (... x M x N) """ return DSMM.apply(sparse_mat, dense_mat)
[docs]def inv_quad(input: Anysor, inv_quad_rhs: torch.Tensor, reduce_inv_quad: bool = True) -> torch.Tensor: r""" Computes an inverse quadratic form (w.r.t self) with several right hand sides, i.e: .. math:: \text{tr}\left( \mathbf R^\top \mathbf A^{-1} \mathbf R \right), where :math:`\mathbf A` is a positive definite matrix (or batch of matrices) and :math:`\mathbf R` represents the right hand sides (:attr:`inv_quad_rhs`). If :attr:`reduce_inv_quad` is set to false (and :attr:`inv_quad_rhs` is supplied), the function instead computes .. math:: \text{diag}\left( \mathbf R^\top \mathbf A^{-1} \mathbf R \right). :param input: :math:`\mathbf A` - the positive definite matrix (... X N X N) :param inv_quad_rhs: :math:`\mathbf R` - the right hand sides of the inverse quadratic term (... x N x M) :param reduce_inv_quad: Whether to compute :math:`\text{tr}\left( \mathbf R^\top \mathbf A^{-1} \mathbf R \right)` or :math:`\text{diag}\left( \mathbf R^\top \mathbf A^{-1} \mathbf R \right)`. :returns: The inverse quadratic term. If `reduce_inv_quad=True`, the inverse quadratic term is of shape (...). Otherwise, it is (... x M). """ from linear_operator.operators import to_linear_operator return to_linear_operator(input).inv_quad(inv_quad_rhs, reduce_inv_quad=reduce_inv_quad)
[docs]def inv_quad_logdet( input: Anysor, inv_quad_rhs: Optional[torch.Tensor] = None, logdet: bool = False, reduce_inv_quad: bool = True ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]: r""" Calls both :func:`inv_quad_logdet` and :func:`logdet` on a positive definite matrix (or batch) :math:`\mathbf A`. However, calling this method is far more efficient and stable than calling each method independently. :param input: :math:`\mathbf A` - the positive definite matrix (... X N X N) :param inv_quad_rhs: :math:`\mathbf R` - the right hand sides of the inverse quadratic term (... x N x M) :param logdet: Whether or not to compute the logdet term :math:`\log \vert \mathbf A \vert`. :param reduce_inv_quad: Whether to compute :math:`\text{tr}\left( \mathbf R^\top \mathbf A^{-1} \mathbf R \right)` or :math:`\text{diag}\left( \mathbf R^\top \mathbf A^{-1} \mathbf R \right)`. :returns: The inverse quadratic term (or None), and the logdet term (or None). If `reduce_inv_quad=True`, the inverse quadratic term is of shape (...). Otherwise, it is (... x M). """ from linear_operator.operators import to_linear_operator return to_linear_operator(input).inv_quad_logdet(inv_quad_rhs, logdet, reduce_inv_quad=reduce_inv_quad)
[docs]def pivoted_cholesky( input: Anysor, rank: int, error_tol: Optional[float] = None, return_pivots: bool = False ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: r""" Performs a partial pivoted Cholesky factorization of a positive definite matrix (or batch of matrices). :math:`\mathbf L \mathbf L^\top = \mathbf A`. The partial pivoted Cholesky factor :math:`\mathbf L \in \mathbb R^{N \times \text{rank}}` forms a low rank approximation to the LinearOperator. The pivots are selected greedily, correspoading to the maximum diagonal element in the residual after each Cholesky iteration. See `Harbrecht et al., 2012`_. :param input: The matrix (or batch of matrices) :math:`\mathbf A` (... x N x N). :param rank: The size of the partial pivoted Cholesky factor. :param error_tol: Defines an optional stopping criterion. If the residual of the factorization is less than :attr:`error_tol`, then the factorization will exit early. This will result in a :math:`\leq \text{ rank}` factor. :param return_pivots: Whether or not to return the pivots alongside the partial pivoted Cholesky factor. :return: The `... x N x rank` factor (and optionally the `... x N` pivots if :attr:`return_pivots` is True). .. _Harbrecht et al., 2012: https://www.sciencedirect.com/science/article/pii/S0168927411001814 """ from linear_operator.operators import to_linear_operator return to_linear_operator(input).pivoted_cholesky(rank=rank, error_tol=error_tol, return_pivots=return_pivots)
[docs]def root_decomposition(input: Anysor, method: Optional[str] = None) -> LinearOperatorType: r""" Returns a (usually low-rank) root decomposition linear operator of the positive definite matrix (or batch of matrices) :math:`\mathbf A`. This can be used for sampling from a Gaussian distribution, or for obtaining a low-rank version of a matrix. :param input: The matrix (or batch of matrices) :math:`\mathbf A` (... x N x N). :param method: Which method to use to perform the root decomposition. Choices are: "cholesky", "lanczos", "symeig", "pivoted_cholesky", or "svd". :return: A tensor :math:`\mathbf R` such that :math:`\mathbf R \mathbf R^\top \approx \mathbf A`. """ from linear_operator.operators import to_linear_operator return to_linear_operator(input).root_decomposition(method=method)
[docs]def root_inv_decomposition( input: Anysor, initial_vectors: Optional[torch.Tensor] = None, test_vectors: Optional[torch.Tensor] = None, method: Optional[str] = None, ) -> LinearOperatorType: r""" Returns a (usually low-rank) inverse root decomposition linear operator of the PSD LinearOperator :math:`\mathbf A`. This can be used for sampling from a Gaussian distribution, or for obtaining a low-rank version of a matrix. The root_inv_decomposition is performed using a partial Lanczos tridiagonalization. :param input: The matrix (or batch of matrices) :math:`\mathbf A` (... x N x N). :param initial_vectors: Vectors used to initialize the Lanczos decomposition. The best initialization vector (determined by :attr:`test_vectors`) will be chosen. :param test_vectors: Vectors used to test the accuracy of the decomposition. :param method: Root decomposition method to use (symeig, diagonalization, lanczos, or cholesky). :return: A tensor :math:`\mathbf R` such that :math:`\mathbf R \mathbf R^\top \approx \mathbf A^{-1}`. """ from linear_operator.operators import to_linear_operator return to_linear_operator(input).root_inv_decomposition( initial_vectors=initial_vectors, test_vectors=test_vectors, method=method )
[docs]def solve(input: Anysor, rhs: torch.Tensor, lhs: Optional[torch.Tensor] = None) -> torch.Tensor: r""" Given a positive definite matrix (or batch of matrices) :math:`\mathbf A`, computes a linear solve with right hand side :math:`\mathbf R`: .. math:: \begin{equation} \mathbf A^{-1} \mathbf R, \end{equation} where :math:`\mathbf R` is :attr:`right_tensor` and :math:`\mathbf A` is the LinearOperator. .. note:: Unlike :func:`torch.linalg.solve`, this function can take an optional :attr:`left_tensor` attribute. If this is supplied :func:`linear_operator.solve` computes .. math:: \begin{equation} \mathbf L \mathbf A^{-1} \mathbf R, \end{equation} where :math:`\mathbf L` is :attr:`left_tensor`. Supplying this can reduce the number of solver calls required in the backward pass. :param input: The matrix (or batch of matrices) :math:`\mathbf A` (... x N x N). :param rhs: :math:`\mathbf R` - the right hand side :param lhs: :math:`\mathbf L` - the left hand side :return: :math:`\mathbf A^{-1} \mathbf R` or :math:`\mathbf L \mathbf A^{-1} \mathbf R`. """ from linear_operator.operators import to_linear_operator return to_linear_operator(input).solve(right_tensor=rhs, left_tensor=lhs)
[docs]def sqrt_inv_matmul( input: Anysor, rhs: torch.Tensor, lhs: Optional[torch.Tensor] = None ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: r""" Given a positive definite matrix (or batch of matrices) :math:`\mathbf A` and a right hand size :math:`\mathbf R`, computes .. math:: \begin{equation} \mathbf A^{-1/2} \mathbf R, \end{equation} If :attr:`lhs` is supplied, computes .. math:: \begin{equation} \mathbf L \mathbf A^{-1/2} \mathbf R, \end{equation} where :math:`\mathbf L` is :attr:`lhs`. (Supplying :attr:`lhs` can reduce the number of solver calls required in the backward pass.) :param input: The matrix (or batch of matrices) :math:`\mathbf A` (... x N x N). :param rhs: :math:`\mathbf R` - the right hand side :param lhs: :math:`\mathbf L` - the left hand side :return: :math:`\mathbf A^{-1/2} \mathbf R` or :math:`\mathbf L \mathbf A^{-1/2} \mathbf R`. """ from linear_operator.operators import to_linear_operator return to_linear_operator(input).sqrt_inv_matmul(rhs=rhs, lhs=lhs)
__all__ = [ "add_diagonal", "add_jitter", "dsmm", "inv_quad", "inv_quad_logdet", "pivoted_cholesky", "root_decomposition", "root_inv_decomposition", "solve", "sqrt_inv_matmul", ]